38 research outputs found

    Quantitative analyses reveal extracellular dynamics of Wnt ligands in Xenopus embryos

    Get PDF
    動く分子と動かない分子が協調して、安定した位置情報を素早く作り出す. 京都大学プレスリリース. 2021-06-04.The mechanism of intercellular transport of Wnt ligands is still a matter of debate. To better understand this issue, we examined the distribution and dynamics of Wnt8 in Xenopus embryos. While Venus-tagged Wnt8 was found on the surfaces of cells close to Wnt-producing cells, we also detected its dispersal over distances of 15 cell diameters. A combination of fluorescence correlation spectroscopy and quantitative imaging suggested that only a small proportion of Wnt8 ligands diffuses freely, whereas most Wnt8 molecules are bound to cell surfaces. Fluorescence decay after photoconversion showed that Wnt8 ligands bound on cell surfaces decrease exponentially, suggesting a dynamic exchange of bound forms of Wnt ligands. Mathematical modeling based on this exchange recapitulates a graded distribution of bound, but not free, Wnt ligands. Based on these results, we propose that Wnt distribution in tissues is controlled by a dynamic exchange of its abundant bound and rare free populations

    Flexible and dynamic nucleosome fiber in living mammalian cells

    Get PDF
    © Landes Bioscience, 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nucleus 4 (2013): 349-356, doi:10.4161/nucl.26053.Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement per 30 ms) caused by Brownian motion. Our in vivo-in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.This work was supported by a grant-in-aid for a MEXT grant, JST CREST, Yamada Science Foundation and Takeda Science Foundation. Nozaki T and Hihara A are JSPS fellows

    Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate

    Get PDF
    To evaluate the feasibility of ZnO nanorod-based surface enhanced Raman scattering (SERS) diagnostics for disease models, particularly for interstitial cystitis/bladder pain syndrome (IC/BPS), ZnO-based SERS sensing chips were developed and applied to an animal disease model. ZnO nanorods were grown to form nano-sized porous structures and coated with gold to facilitate size-selective biomarker detection. Raman spectra were acquired on a surface enhanced Raman substrate from the urine in a rat model of IC/BPS and analyzed using a statistical analysis method called principal component analysis (PCA). The nanorods grown after the ZnO seed deposition were 30 to 50 nm in diameter and 500 to 600 nm in length. A volume of gold corresponding to a thin film thickness of 100 nm was deposited on the grown nanorod structure. Raman spectroscopic signals were measured in the scattered region for nanometer biomarker detection to indicate IC/BPS. The Raman peaks for the control group and IC/BPS group are observed at 641, 683, 723, 873, 1002, 1030, and 1355 cm(-1),which corresponded to various bonding types and compounds. The PCA results are plotted in 2D and 3D. The Raman signals and statistical analyses obtained from the nano-sized biomarkers of intractable inflammatory diseases demonstrate the possibility of an early diagnosis

    Optimization of ZnO Nanorod-Based Surface Enhanced Raman Scattering Substrates for Bio-Applications

    Get PDF
    Nanorods based on ZnO for surface enhanced Raman spectroscopy are promising for the non-invasive and rapid detection of biomarkers and diagnosis of disease. However, optimization of nanorod and coating parameters is essential to their practical application. With the goal of establishing a baseline for early detection in biological applications, gold-coated ZnO nanorods were grown and coated to form porous structures. Prior to gold deposition, the grown nanorods were 30-50 nm in diameter and 500-600 nm in length. Gold coatings were grown on the nanorod structure to a series of thicknesses between 100 and 300 nm. A gold coating of 200 nm was found to optimize the Rhodamine B model analyte signal, while performance for rat urine depended on the biomarkers to be detected. These results establish design guidelines for future use of Au-ZnO nanorods in the study and early diagnosis of inflammatory diseases

    Phosphorescence decay time measurements using intensity correlation spectroscopy.

    Get PDF
    In this paper, we report on phosphorescence measurements for oxygen dynamics in cells by means of a correlation method, which is an expansion of the fluorescence correlation spectroscopy. The intensity correlation function of the emission excited by a pulsed light source was measured. With changing the pulse timing, both the fluorescence correlation function and the decay time of phosphorescence could be analyzed. This method was applied for the analysis of the oxygen dynamics in HeLa cells stained by Pd(II)-porphine. The decay function consisted of two exponential components, which might be attributed to free and protein-bound forms of Pd(II)-porphine in the cell, respectively. The relative change of the oxygen concentration under normal and uncoupled respiration conditions was also measured. The simplicity of this method is a great advantage in the biological applications. Although the current system we used was limited in the temporal resolution, the method is in principle applicable to faster decay time measurements down to the nano-second range of the fluorescence decay times

    Mobility of Nucleostemin in Live Cells Is Specifically Related to Transcription Inhibition by Actinomycin D and GTP-Binding Motif

    No full text
    In vertebrates, nucleostemin (NS) is an important marker of proliferation in several types of stem and cancer cells, and it can also interact with the tumor-suppressing transcription factor p53. In the present study, the intra-nuclear diffusional dynamics of native NS tagged with GFP and two GFP-tagged NS mutants with deleted guanosine triphosphate (GTP)-binding domains were analyzed by fluorescence correlation spectroscopy. Free and slow binding diffusion coefficients were evaluated, either under normal culture conditions or under treatment with specific cellular proliferation inhibitors actinomycin D (ActD), 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), or trichostatin A (TSA). When treated with ActD, the fractional ratio of the slow diffusion was significantly decreased in the nucleoplasm. The decrease was proportional to ActD treatment duration. In contrast, DRB or TSA treatment did not affect NS diffusion. Interestingly, it was also found that the rate of diffusion of two NS mutants increased significantly even under normal conditions. These results suggest that the mobility of NS in the nucleoplasm is related to the initiation of DNA or RNA replication, and that the GTP-binding motif is also related to the large change of mobility

    Photosystem II antenna phosphorylation-dependent protein diffusion determined by fluorescence correlation spectroscopy.

    Get PDF
    Flexibility of chloroplast thylakoid membrane proteins is essential for plant fitness and survival under fluctuating light environments. Phosphorylation of light-harvesting antenna complex II (LHCII) is known to induce dynamic protein reorganization that fine-tunes the rate of energy conversion in each photosystem. However, molecular details of how LHCII phosphorylation causes light energy redistribution throughout thylakoid membranes still remain unclear. By using fluorescence correlation spectroscopy, we here determined the LHCII phosphorylation-dependent protein diffusion in thylakoid membranes isolated from the green alga Chlamydomonas reinhardtii. As compared to the LHCII dephosphorylation-induced condition, the diffusion coefficient of LHCII increased nearly twofold under the LHCII phosphorylation-induced condition. We also verified the results by using the LHCII phosphorylation-deficient mutant. Our observation suggests that LHCII phosphorylation-dependent protein reorganization occurs along with the changes in the rate of protein diffusion, which would have an important role in mediating light energy redistribution throughout thylakoid membranes

    Photoluminescent silicon nanoparticles ???as a self-reporting nanomedicine

    No full text
    Porous silicon nanoparticles (PSiNPs) have attracted increasing interest for imaging and treatment of diseases due to biocompatibility, large specific capacity for drug loading, non-toxic degradation products, and intrinsic photoluminescence (PL). In particular, the PL lifetime is typically on the order of microseconds, significantly longer than the nanosecond lifetimes exhibited by fluorescent molecules naturally presented in cells and tissues, thus allows discrimination of the silicon nanoparticle from the tissue autofluorescence. Herein, the long-lived PL is employed to monitor the status of drug payload elution, associated with biodegradation of the silicon nanocarriers, and demonstrated as a ???self-reporting??? system. Dissolution of the silicon matrix in physiological environment triggers drug release, along with decreasing intensity and blue shift of the PL spectra. Furthermore, by tracking the PL lifetime, the drug releasing status and the residual lifespan of the silicon nanocarriers are correspondingly acquired. The PL lifetime is a physically intensive property that can report only the inherent characteristics of the PSiNPs regardless of surrounding noise while the intensity-based reporting is substantially affected by many unwanted factors. We investigate a unique means to inform the lifespan of the PSiNPs as a biodegradable drug nanocarrier in vivo. This study presents a promising potential of the photoluminescent PSiNPs toward advanced drug delivery systems for translational medical platform including theranostics and visualized drug delivery tracking

    Detection of substrate binding of a collagen-specific molecular chaperone HSP47 in solution using fluorescence correlation spectroscopy

    Get PDF
    Heat shock protein 47 kDa (HSP47), an ER-resident and collagen-specific molecular chaperone, recognizes collagenous hydrophobic amino acid sequences (Gly-Pro-Hyp) and assists in secretion of correctly folded collagen. Elevated collagen production is correlated with HSP47 expression in various diseases, including fibrosis and keloid. HSP47 knockdown ameliorates liver fibrosis by inhibiting collagen secretion, and inhibition of the interaction of HSP47 with procollagen also prevents collagen secretion. Therefore, a high-throughput system for screening of drugs capable of inhibiting the interaction between HSP47 and collagen would aid the development of novel therapies for fibrotic diseases. In this study, we established a straightforward method for rapidly and quantitatively measuring the interaction between HSP47 and collagen in solution using fluorescence correlation spectroscopy (FCS). The diffusion rate of HSP47 labeled with Alexa Fluor 488 (HSP47-AF), a green fluorescent dye, decreased upon addition of type I or III collagen, whereas that of dye-labeled protein disulfide isomerase (PDI) or bovine serum albumin (BSA) did not, indicating that specific binding of HSP47 to collagen could be detected using FCS. Using this method, we calculated the dissociation constant of the interaction between HSP47 and collagen. The binding ratio between HSP47-AF and collagen did not change in the presence of sodium chloride, confirming that the interaction was hydrophobic in nature. In addition, we observed dissociation of collagen from HSP47 at low pH and re-association after recovery to neutral pH. These observations indicate that this system is appropriate for detecting the interaction between HSP47 and collagen, and could be applied to high-throughput screening for drugs capable of suppressing and/or curing fibrosis
    corecore